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WAVELET TRANSFORM FOR TIME-FREQUENCY
ANALYSIS OF THE VIBRATIONAL SIGNATURE

AND ITS APPLICATION

By

Jae-Jin Jeon and Young S. Shin

ABSTRACT

Wavelet transform is applied to the analysis of vibration

signatures in order to verify the ability of the detection of

abnormal condition. It can well describe the dynamics of the

signal's spectral composition of a non-stationary and

stationary signal to be measured and presented in the form of

3-D time-frequency map. Although wavelet has been developed

over about ten years in the mathematics and physics, its

engineering applications is a first stage. The objective of this

report outlines the definition of the wavelet transform and is to

discuss the properties of the wavelet transform as new tool for

the vibration analysis, and then demonstrates how it may be

applied to the machinery condition monitoring.

I. INTRODUCTION

Wavelets are a very popular topic of the signal processing and applied

mathematics. In the last ten years, an interest in them has grown at an

fast rate in signal and numerical analysis [Beylkin, Coifman and Rokhlin,

1991, Heil, 1990 and Resnikoff and Burrus, 1990]. Wavelet analysis appears

to new subject for the time-frequency analysis of the vibrational si,-natures.

Tra,4itional spectral analysis provides spectral values which are

independent of time. It is assumed to be ergodic and stationary signal with
I



time. However the signal associated with most vibrational phenomena are
in general time varying, which means that their characteristics change
with time and they have various features in different time frames. For
example, the vibration during the start-up of an engine or pump is non-
stationary, the sound pressure generated from speaker is nonstationary,
and so on. In case of the signal containing some transient or nonstationary
conditions, the traditional approach in signal analysis fails to describe the
dynamics of the signal's frequency components changes. Changes in the
condition of a component such as a gear can be expected to cause some
change in the vibration generated by mechanical system. Very little
damage detection can be performed using the vibration signal directly from
the system because the small changes generated by early damage may be
masked by the normal vibration of the system.

Two methods of signal analysis for nonstationary application are
commonly used in time-frequency domain. The windowed Fourier
transform, otherwise so called short time Fourier transform(STFT), has a
short time window of a fixed size centered at time t as figure 1(a). The
windowed Fourier transform is given as follows

F(co,t) = fg(r - t) e-"O'r s(r) dr (1)

where F(co,t) is the windowed Fourier transform, g(t) window function and

s(t) time signal. The range of integration is from -00 to -o. If the length of
the window is time duration T, the resolution of time frequency domain
depends on T. Its frequency bandwidth or frequency resolution is
approximately 1VT. Therefore this method have the limitation of resolution
in both time and frequency domain simultaneously.

The second method, often called Wigner distribution method, is based
on the instantaneous power spectra defined as following equation (2)

S1__
w(Wt) = 2 7s(-,r/2)s(t+ r/2) e-''r dr (2)
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where w(wt) is Wigner distribution function. Equation (2) is called the
Wigner distribution of s(t)in figure I(b). We discussed well at references
[Jeon and Shin (1993) and Shin, Jeon and Spooner (1993)] about the
characteristics of Wigner-Ville distribution. For a nostationary signal
analysis, spectrogram is commonly used, which is based on the
assumption that it is a collection of a short duration stationary signal.".o

-5.0-1

-2.5

0.0000 0.0512 0.1024 0.153e 0.2048

Time (sec)
(a) Windowed Fourier transform

"0)

5- 50-"0 t

.•O 2$- • , 1V2 T/1:2

0.0

-2.5-

-5.0
0.0000 0.0512 0.1024 0.1536 0.2048

Time (sec)

(b) Wigner distribution

Figure 1. Calculation of the windowed Fourier transform and

instantaneous spectral density(Wigner distribution) of a vibration signal.
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A major drawback of this approach is that the frequency resolution is

directly affected by the duration of short stationary time, which
subsequently determines the time resolution. The frequency and time
resoiution of the Wigner distribution are not determined by the short
duration but rather determined by the selection of desired resolution of the
signal itself, but may not be appropriate for signals containing patterns at

both large and very small scales.

The windowed Fourier transform is well portray the characteristics of
signals in which all of the patterns appear at approximately the same
scale, but may not be appropriate for signals containing patterns at both
large and small scales because of the time fixed window size. The
multifrequency channel decomposition, which are an intermediate between
a time and a Fourier representation, have found many applications in
signal and image processing [Mallat, 1989). Much recent research has

been focused on this domain with the modeling of a new decomposition
called the wavelet transform, which is presented signal by summation of
family of functions which are the dilations and translations of a unique
function called a wavelet. Instead of portraying a signal into harmonic
functions (e'" in Fourier transform), the signal is presented into a series of
orthogonal basis functions of finite length. Each wavelet is located at a
different position on the time axis. At the finest scale, wavelets may be very

short indeed; at a coarse scale, they may be very long. Alternatively very
small disturbances in a record of machinery vibration can be easily

characterized from a wavelet 3-D or 2-D map in which the mean-square
value of the time record is shown over wavelet scale and position.

One important property of a wavelet transform is its ability to
characterize easily the local regularity of a function. Simply by a change of

the scale parameter(dilation) in the wavelet transform, many scales of local
structure can be described by a distribution in the time-scale plane. Wang
and McFadden (1993) introduced the advantage for examining the vibration

signal generated by a gear and D. E. Newland (1993) well investigated the
properties of the wavelet as a new tool for the analysis of vibration records.

4



This report outlines the definition of the wavelet transform, compare
with the advantages and the disadvantages of wavelet and pseudo Wigner-
Ville distribution in time-frequency domain analysis, and then
demonstrates how it may be applied to analysis of the vibration signals for
the machinery condition monitoring.
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II. DEFINITION OF WAVELET TRANSFORM

To overcome the limitation of the fixed resolution of the windowed
Fourier transform in the time and frequency domains by decomposing the
signal s(t) into a family of functions which are the translation and dilation
of an unique function w(t), defined the continuous wavelet transform as

W(ab = 1 7 "=(t J - b) s(t) dt (3)
a 00 a

where W(a,b) is wavelet transform, V is an analyzing wavelet, a

represents a time dilation, b a time translation, and bar for complex

conjugate. The normalization factor 11-4- is perhaps most effectively

visualized as endowing IW(a,b)12 with unit of power/Hertz [Shensa, 1992).

We consider the space L2 (R) of measurable function yf, defined on the

real line R (R := (--, -)), certain weak 'admissibility' conditions are usually
required on Vji(t) [Shensa, 1992];

-r dwo < oo (4)

where yf(wo)is the Fourier transform of yt(t). They ensure that the

transformation is a bounded invertible uperator in appropriate space
(Daubechies, 1988]. If t(CO) is differentiable, then it suffices that yg be

zero mean, that is,

f /(t) dt = 0 (5)

for equation (4) to be satisfied. In particular, since the local average values
of every function in L2 (R) must 'decay' to zero at ±00, the sinusoidal(wave)
functions e'" (basis of Fourier transform) do not belong to L2 (R). Fourier

series representation of any functions is in L2 (0,270. In fact, if it looks for
6



wavelets that generate L2 (R), these wavelets should decay to zero at +*;

and for all practical purposes, the decay should be very fast [Chui, 1992).

In signal processing, the significance of equation (3) is well understood
by comparing it to the windowed Fourier transform (or short-time Fourier

transform):

F(ao,b) = Jg(t - b) ei(Lx s(t) dt. (6)

Thus, to obtain F(co, b), one multiplies the signal by an appropriate window

g(t) (such as Gaussian) centered at time b and then takes the Fourier
transform. In mathematical fbrms, equation (6) is an expansion of the
signal in terms of family of functions g(t-b)e"i, which are generated from a

single function g(t) through translations b in time and translations (0 in
frequency. In contrast, the wavelet transform of equation (3) is an
expansion in function yt((t - b) / a) generated by translation b and dilation

a in time. Thus, the continuous wavelet transform is similar to windowed

Fourier transform with a different window size for each frequency. The
important facts of this is that, while the basis functions in equation (6) have

the same time and frequency resolution at all points of the transform plane,

those of wavelet transform have the time resolution which decrease with
increasing a and the frequency resolution which increase with decreasing
a width adapted to their frequency components: at high frequency V/ are
very narrow, while at low frequency IV are much broader. As a results, the

wavelet transform is better than the windowed Fourier transform to

analyze on very small disturbance, i.e., high frequency phenomena. This
property can be a best advantage in signal processing since high frequency

characteristics are generally highly localized in time whereas slowly

varying signals require good low frequency resolution [Shensa, 1992].
Figure 2 shows the typical shapes of windowed Fourier transform functions

and wavelet.

The wavelet transform means that signal s(t) is characterized by

decomposition into a set of wavelet family with series of different frequency

7



bandwidth. For the decomposition of the signal s(t) defined on real line, it

is necessary to shift V along R. Let Z denote the set of integers;

Z ={ ........ -1,0,1 , ........

The simplest way for V to cover all of R is to consider all the integral shift

of i,

V,(t -k), k E Z. (7)

(b)
(a)

\ (t) .\ \

t

with a < I

Reg' b > 0

-. ,,bwith a > I

Figure 2. The typical shapes of (a) windowed Fourier transform function

g(t), (b) wavelet V,a'b, WO = (I-t2) e't2/2[Daubechies, 1992].
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Next, as in Fourier transform, it must be also considered wavelets with

different frequencies. It is considered wavelets with frequencies partitioned

into consecutive 'octaves' (or frequency bands). For computational

efficiency, it will be used integral power of 2 for frequency partitioning, that
is, the small wavelets is considered as follows

V(2Jt - k), j,k e Z. (8)

From the equation (3), yt(2Jt - k) is obtained from the wavelet function

iV(t) by dilation of 1/2j and translation of k/2j. An important particular

case of the discrete wavelet transform which was found is that some

wavelets V(t) exist such that 12 V(2j(t -2-J'k))(j,k)eZ is an orthonormal

basis of L2 (R) [Mallat, 1989].

As originally proposed by Morlet et al. (1982), tV' was a modulated

Gaussian

v(0 = eiawot e-t2 /2 (9)

and this function is selected to analyr'3 the vibration of gear box for signal

processing applications[Wang and McFadden, 1993). The example of a

shape for the modulated Gaussian wavelet is shown in figure 3. The
Fourier transform of the first wavelet family IV(t/a), i.e., no translation, is

Waa)) = a e"(•" o°a)a( (10)

which has analysis frequency wo / a. o /o a is a simple frequency

parameter which determines the analyzing wavelet. We can easily see

that equation (9) satisfies the admissibility condition equation (4). The

analyzing bandwidth of the wavelet is proportional to la, thus having a
constant relative bandwidth(BW), that is, BW/(Ao0/ a) = constant. This

feature is also reflected in the narrow time window at higher frequency(i.e.,
at smaller a ). In general, the function W(t) is selected by its time and

frequency localization properties [Daubechies, 1990].

9



The scale change may be performed by substituting a =2") for the

computation efficiency. In this case the wavelet family is 6 V/( 2 j t),

and the definition of the wavelet transform becomes

W(2j, b) = j7 F(- -)s(t) dt (11)

In this report, the unique function IV(t) can be selected to be a well-behaved

modulated Gaussian function, given by equation (9).

2.0-

-2.0-
-4.0 0.0 4.0

Time(sec)

Figure 3. Example of modulated Gaussian wavelet.

(V(t) = eI=° e-"/2, co° = 21rfo, fo = 2Hz)
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III. TIME-FREQUENCY ANALYSIS

Suppose that V/ is any basic wavelet such that both tV and its Fourier
transform ' are window functions which have centers and half widths of

time and frequency domain given by t, (a, At, Awo, respectively. Then

the wavelet transform of an analog signal s(t) is given as follows.

W(a,b) = a1-1 2 f s(t) -/(t" b)dt (12)a

Equation (12) localizes the signal with a time window

[b + at* - aAt, b + at + aAt],

where the center of the window is at b + at* and the width is given by 2aAt.
This is called time localization in signal analysis.

On the other hand, let set the Fourier transform of yt

77(0)) = AV(o + 0)*), (13)

where 77 is the Fourier transform of iV, then 17 is also a window function

with center at o) and width by AO), and by Parseval identity, the wavelet
transform in equation (12) becomes [Chui, 1992]

W~~b =aiai11 -sA ibwW(a,b) f aa2s() e (a(w - 0) dw (14)
-00O

where the phase shift of eb0o is determined by translation along time axis.
Equation (14) is also localized information of spectrum 4(0) of the signal

s(t) with frequency window

11



* *

-- I-Aw, W + - Awl,
a a a a

where the center of window is at W /a and width is given by 2Aw / a.
This is called frequency localization.

From equation (12) and (14), time-frequency window of wavelet
transform is as follows.

[b + at -aAt, b + at + aAtlx[ 0)  A + 1 (15)
a a a a

The covered area by time-frequency window is the multiplication of time
and frequency bandwidth around the center of window. The time-frequency
window is shown figure 4. Eventually it is considered positive frequencies,
i.e., a > 0, the basic wavelet iV may be chosen that the center 0)w of • is a

positive number. The ratio of the center frequency to the width of frequency
band is given by

)/ a _ w= 
(16)

2Aw/a 2AU

which is independent of the location of the center frequency. This is called
constant percentage band width analysis or constant-Q frequency analysis.
In this report, the octave band is used for the analysis of vibration signal.
The frequency window along the frequency axis narrows for large center
frequency 0o / a and widens for small one and the time window is opposite
to frequency window. The area of the window is a constant, given by
4AtA o.

12



a 2

b+all* b+a 2li t

Figure 4. Time-frequency windows, a, > a 2 .
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IV. DISCRETE WAVELET TRANSFORM

In the continuous wavelet, the family is considered

S= ial-' V(t- b) (17)
a

where b e R, a e R+ with a * 0, and Vi is admissible. R denotes the real

line and R+ denotes the positive real line. It is considered with discrete
values for a and b. For the discretization of the dilation parameter, we
select a = am, where m e Z, and the dilation step a0o 1 is fixed. For
convenience, it assume a0 > 1. If a0 = 1, the wavelet transform may be

similar to windowed Fourier transform. For m = 0, it seems natural as
well to dicretize b by taking only the integer multiples of one fixed b0,
where b0 is appropriately chosen so that the w(t - nb0) cover the whole
line. We arbitrarily fix b0 > 0 in this report. For the different values of m,

the width of a~m/ 2 yi(a6m t) is a times the width of lv(t) defined at section

III, so that the choice b = nboam will ensure that the discretized wavelets
at level m cover the line in the same way that yi(t - nb0) do. Thus it is

selected ,a = a•, b = nboa, where m,n range over Z, and a0 > 1, bb > 0
are fixed; the appropriate choices for a0 and bb depend on the wavelet V'

and the characteristics of signal. The discrete form of equation (17) is
given as following equation [Daubechies, 1992]

S= ( 4m/ 2 V( (t_- a0

(18)

= a m12 yf(amt - nbo)

For the computation efficiency, we assume that a = 2 m, that is, a0 = 2,

where m is termed the octave of the transform. This means that the

14



frequency resolution of wavelet has a octave band. The integral equation (3)
yields a wavelet serin s as following equation by using equation (18).

W(2 m' nb°) j 1vt -___ )s(t) dt (19)

At the discrete wavelet transform, the finite energy for the wavelet
transform is not equivalent to finite energy for the wavelet series. It
depends on the sampling grid as well as the function iV(t). In addition, it

often take b to be a multiple of a.

W(2 m , n2 m ) = ;7- J2 i(2t - n)s(t) dt (20)

A logical step in applying the theory to discrete signal is to discretize the

integral in equation (20) as follows.

1 k
W(2 m, n2 m ) = V( n)s(k) (21)

k 2

Octave m is only output every 2m samples. In this form the resulting

algorithm will not be translation invariant [Mallat, 1982]. The discrete
wavelet transform is highly not invariant under translations. In practice

one does not use an infinite number of scales, but cuts off very low and very
high frequencies.

15



V. EXAMPLES AND DISCUSSIONS

A signature generated by machinery involves many informations about
its operating condition. It can be obtained the information about the
operating condition of machinery by applying the analysis tools for the
vibration records. Wavelet transform is a new tool that is particularly
suited for time-frequency analysis of nonstationary or stationary signals.
There are many advantages of using wavelet transform for both steady and
transient signals. We will discuss the performance of the wavelet
transform by using simple example and compare with pseudo Wigner-Ville
distribution(PWVD) in time-frequency domain analysis.

Before showing some examples, it is necessary to discuss how best to
describe the results. We have found that 3-D map and 2-D map of wavelet
transform are a useful presentation for many applications. The square of
the amplitude in equation (21) has the unit power/Hz. The distribution of
the amplitude square over the individual wavelet and position can now be
seen as figure 5. If the length of sampled data is shorter than the wavelet
size, the distribution at lower wavelet level, i.e., low frequency, has the
value at only one position.

In order to describe the results of wavelet transform, we use the 3-D and
2-D(for the complicated signal) graphics. And for graphic, the results of
that is distributed and reduced to 256(3-D) or 512(2-D) data point along the
time axis. Frequency axis is a log scale (octave scale or wavelet level) and
time axis is a linear scale in figures of wavelet transform.

A. Harmonic wave with stepwise frequency changes

Figure 6 shows (a) the pure sine wave with stepwise frequency changes
500 Hz, 250 Hz and 100 Hz, (b) its PWVD and (c) the wavelet transform. The
wavelet transform and PWVD well represent the time delay and the

16



frequency components of signal. The wavelet transform is a result with

frequency partitioned into consecutive octaves for computational efficiency.
Then the magnitude of 100 Hz is dispersed. But the wavelet transform

clearly describes the time delay. From these figures, we can see that the

PWVD has the higher resolution than the wavelet transform in frequency
line. However the computation time of PWVD is extremely higher than the

wavelet transform. Figure 7 shows the wavelet transform of the sine wave

with 500 Hz in time from 0.085 sec to 0.17 sec. the wavelet transform well
represents the time delay and the frequency band of the signal.

Wavelet

Level

5

4 .. .... ...... ........ .. .

3

2

1

Time
N/2 N

Figure 5. The lattice of time-frequency localization of wavelet transform

(N = Number of data points)
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(a)

0 6.0

'0.0.0

4.0
',I"

4.Oo,

0 2.0
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Fig.6 (continued)
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&0 20.0

j5.0

0 0-0"•• 6.0

(c)

Figure 6. Time-frequency localization of PWVD and wavelet transform: (a)
signal s(t), (b) its PWVD and (c) its wavelet transform (fs=2000 Hz, N=512).
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10 20.0-

15.0

jo.0" '-0.

~ 10.0

Figure 7. Wavelet transform for step sine wave (f = 500 Hz); fs 2000 Hz,

N=512.
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R. Swept harmonic wave

The effect of sweep rate on PWVD was well investigated at Jeon and

Shin (1993), and Shin, Jeon and Spooner (1993). Figure 8. shows (a) the

swept cosine wave with the sweep rate 32 Hz/sec, (b) its PWVD and (c) its

wavelet transform. From this figures, we can see that PWVD is a useful

tool for analysis of the signal with fast frequency change in time. However

if the records of signal is longer, the computation time may be much

needed. The result of the wavelet transform does not clearly represents the

sweep condition but well describes the change of frequency range with time.

2.0-

A 1.0--

0 -0 -t
-2.0-

0.00 0.25 0.50 0.75 1.00
Time (sec)

(a)

Fig.8 (continued)
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'06.0

4.0

S2.0

0.0

(c)

Figure 8. Time-frequency localization of the PWVD and wavelet transform:
(a) signal s(t) = cos (2x 32 t2 ), (b) its PWVVD and (c) its wavelet transform (fs

250 Hz, N = 256).
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C. Harmonic wave with glitches

The interesting phenomena on the signal with an abnormal component
as a fault were investigated. Figure 9 shows (a) the harmonic wave with
glitch at a small region, (b) is PWVD and (c) its wavelet transform. It can
be seen that both PWVD and wavelet transform of the signal figure 9(a) well
represents the location of each glitch and its frequency components.
Figure10 is the result of wavelet transform in case of sampling frequency
8192 Hz. From these figures, it can be clearly seen that the wavelet
transform is very useful tool in the analysis of the signal required higher
time resolution. Figure 9(c) shows the glitch components more clearly than
PWVD because the wavelet transform has the very narrow time window in
high frequency region. This characteristic of the wavelet transform is
useful to detect the fault or glitch although the fault is small and to monitor
the condition on any vibrational machinery under the steady operation
condition. Also the wavelet transform is more effective for the analysis of
signal which the time record length is long, since the sweep along the
frequency line is octave step.

2.0-

1.0-

0.0

-2.0-
0.00 0.25 0.50 0.75 1.00

Time (sec)
(a)

Fig.9 (continued)
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(b)

Fig.9 (continued)
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4t

4.0
4)

E2.0

0.0

(c)

Figure 9. Time-frequency localization of PWVD and wavelet transform: (a)
the signal s(t) PJeon and Shin, 1993], (b) its PWVD and (c) its wavelet
transform (fs = 256 Hz, N = 256).
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40 20.0

15.0

0).

0 "0..,

Figure 10. Time-frequency localization of wavelet transform for the signal
Fig. 9(a) (fs = 8192 Hz, N = 8192).
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D. Harmonic wave with pulse

Figure 11 illustrates about the signal including small changes
generated by early damage. In practice, this signal is not given by this
continuous expression, but by samples, and adding a 5-function is then
approximated by adding a constant to one sample only. The example

signal is generated by following equation.

s(t) = sin(2n 100 t) + sin(2n 500 t) + 1.5 W(t-0.049) + 1.5 8(t-0.061) (22)

From this figure, we can see that the wavelet transform has the great
advantage for the analysis of the signature including the small

disturbance. PWVD does not give the exact information about time delay of
pulse but well represents about the frequency components of main

signatures. The wavelet transform does not describe the magnitude of the
main frequency components but well represents the time delay of pulse and

is obtained the result by very short computation time. From this example,
the wavelet transform is very useful tool to detect the fault although that is
very small region on time axis.
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Fig. 11 (continued)
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Fig. 11 (continued)
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Figure 11. Time-frequency localization of PWV'D and wavelet transform:
(a) the signal s(t), (b) its PWVD and (c) its wavelet transform (fs = 8192 Hz,
N = 1024)
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E. Actual pump signal

The signal of actual pump was measured at the steady state speed

without and with abnormal condition. Figure 12 show the time signal
pattern for each condition, and figures 13 and 14 show the results of wavelet
transform by using 3-D or 2-D graphics. Also figure 15 are the results of
pseudo Wigner-Ville distribution. These figures show a very interesting
results.

From these figures, we can easily find the abnormal condition. At 13th
frequency band of figure 13(a) and (b), the results of wavelet transform
obviously show the different condition and pattern for each case. And also
at 8th frequency band, the small changes of patterns can be seen. Figure
14(a) and (b) well represent the operation condition although the shape is
more complicate and we can see the abnormal state of pump.

In this case, if one wavelet to have 13th frequency band is used, it gives
good results for diagnosis and vibration condition monitoring as very short
computation time. Figure 15 are PWVD. Also PWVD well represents the
abnormal condition but the computation time is very long than that of
wavelet transform. In the case of wavelet transform, it is possible to
independently compute for each wavelet level different from PWVD. The

difference of computation time for the wavelet transform and PWVD is
about 100 times for the number of sample data N=2048 in the calculation of a
whole plane. At VAX3520, the computation time is 18 seconds for wavelet
transform and about 30 minutes for PWVD.

Especially the wavelet transform may be very useful to detect the small
disturbance over long record length and to analyze the signals which has a
long time duration and intermittent abnormal condition such as non-
rotating machinery. The advantage of the Wigner-Ville distribution is that,
unlike the wavelet transform or the windowed Fourier transform, it does
not introduce a reference function(such as wavelet or window function in
Eq.(3) and (1)) against which the signal has to be integrated and the short
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time signal. The disadvantage is that the signal enters in Wigner-Ville

distribution in a quadratic rather than linear way, which causes many

interference phenomena as shown in references Jeon and Shin (1993), and

Shin, Jeon and Spooner (1993). Wigner-Ville distribution may be useful in
some application for signals which have a very short time duration.
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Time (sec)

(b)

Figure 12. Time patterns of actual pump signal (a) without and (b) with

abnormal condition.

32



13.0- -#,.A -A. • L A .• -A. L A- A-A .

12.0 -

N
"10.0-

0)

I..

CM 3.0 -
2.0-

) 6.0-
C" 5.0-•

It 4 .0 -...... ...

3 .0 -. ...

2.0 -....

1.0-

0.0000 0.0512 0.1024 0.1536 0.2048
Time (sec)

(a)

Fig.13 (continued)
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Figure 13. Time-frequency localization 2-D map of wavelet transform for

Fig. 12(a) and (b), respectively (Us = 10 kHz, N=2048).
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Fig. 14 (continued)
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Figure 14. Time-frequency localization 3-D map of wavelet transform for

Fig. 12(a) and (b), respectively (fs=10 kHz, N=2048).
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Fig.13 Time-frequency localization of PWVD for Fig. 12(a) and (b),
respectively (fs = 10 kHz, N = 2048).
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VI. CONCLUSIONS

The wavelet transform has been investigated and applied to analyzing
sampled signal and the actual pump signal. The results of this research
will be valuable asset for the analysis of vibration records and condition
monitoring of machinery. The following conclusions can be drawn:

(1) The wavelet transform is ideally suited for portraying the wide-band
transient or nonstationary vibration records in time-frequency domain.

(2) The wavelet transform has a great advantage to detect the small
disturbance of the signal.

(3) The computation time of wavelet transform is very short in comparison
with other time-frequency localization techniques.

(4) The modified Gaussian wavelet was well behavior and very effective to

analyze the vibration records.

(5) The wavelet transform characterizes the time-frequency localization of
the signal well and may be useful tool for the machinery condition
monitoring.

(6) If the wavelet level, that is, frequency band, is selected at wavelet
transform, its results will be a useful tool for the effective pattern
recognition of machinery diagnosis and monitoring.
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APPENDIX. PROGRAM LIST

A. Program List of Wavelet Transform(FORTRAN 77)

c

program wavelet

c

C -----------------------------------------------------------------------------------------------------

C

c WAVELET TRANSFORM
C

c by
c

c Dept. of Mechanical Engineering
c Naval Postgraduate School
C

C -------------------------------------------------------------------------------------------------

c

c This program is a wavelet transform by using modified
c Gaussian wavelet (octave sweep or 113 octave sweep).
c
c Variables
c

c n = number of input data(n must be the power of 2.)

c fs = sampling frequency
c dt = sampling time(time interval)
c bw = cutoff frequency in highpass filter

c a = dilation
c b = translation
c w = coefficient of wavelet transform I w(a,b) I **2
c

c Array
C

c x(i) = input data set

42



c xl(i) = filtered input data set
c bk(i) = filter weight
C

C

dimension x(8192),bk(4100),xl(8192)

complex ai,sum
character*16 inname,outname

character as
C

ai=cmplx(O.,1.)

pi=atan(1.)*4.
C

print*,-------------------------------------------

print*
print*,' WAVELET TRANSFORM'

print*
print*'
print*
print*,'What is an input filename ?'
read(*,10) inname
print*,'What is an output filename ?'
read(*,10) outname

10 format(a16)
c
c select the sweep method
c

print*,Vhat do you want the sweep method ?

print*,' if 1/1 octave, input 1'
print*,' if 1/3 octave, input 2'
read(*,*) mswp

c

c read the input data file
c

call indata(inname,x,fs,nnn)
c
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dt=I./fs
c

call smean(n,x)
c

print*,'Do you want to apply highpass digital'
print*,'filter to the original data ? (y/n)'
read(*,20) as

2D format(al)

if (as.eq.'Y'.or.as.eq.'y') then

print*,'Enter the cutoff frequency of
print*,'the digital highpass filter (in Hz)'
read(*,*) bw

endif
c
c signal modifications
C

c Application of highpass digital filter

c

if (as.eq.Y'.or.as.eq.'y') then

mo=n/2

c calculate the filter weighting

call filter(mo,bw,dt,bk)

write(*,*) 'finished filtering'

c pass the highpass filter

do 160 i=lIn

160 xl(i)=0.

do 200 i=1,n
do 170 k=-mo,mo

j=k
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if (k.1t.O) then
j~k*(- 1)

endif
j=j+ 1
11=i-k
if (11.1t.1) then

11=11+n
elseif (11.gt.n) then

11=11-n
endif
bb=-bkQj)
if (k.eq.O) then

bb=1I-bkQj)
endif
x 1(i)=x 1(i)hbb*x(11)

170 continue
200 continue

do 210 i=I,n
210 x(i)=xl(i)

endif

if (mswp.eq.I) then
nk=nn
fac=1.

elseif (mswp.eq.2) then

fac=3.
endif
nr=nk-int(fac)+ 1

open(7 ,file=outname,status='new')
C

c calculate wavelet transform

C

tini=0.
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ttime=dt*n
fD=2.*pi
wrjte(7,*) tini

rzite(7,*) ttirne
wrjte(7,*) nn,index

do 1000 i=l,nr
fio=2**((nk-i+ 1)/fac)
a=fio*dt
nxn=int(ttime/a)
if (rnm.eq.0) nm=1
ddt=ttime/nm
sr=sqrt(-alog(0. 1 )*2)*fio

max=int(sr)
if (max.ge.2*n) max=2*n

do 900 j=1,rnx

surn=cmplx(0.,0.)
b=ddtI2.+ddt*floatQj-1)

jk=int(b/dt)+1

do 800 k=-max,max

t--k*dt/a

kl=jk~ik
if (kl~lt.1) then

if (kl.lt.-n) then
kl=kl+2*n

else

kl=kl+n
endif

endif
if (kl.gt.n) then

if (kl.ge.2*n) then

kl=kl-2*n
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else
kl=kl-n

endif
endif
sum=sum+x(kl)*cexp(-ai*fU*t)*exp(-t*t/2.)*dt

800 continue

w=cabs(sum)/sqrt(a)

w=abs(w)*abs(w)
write(7,*) ij,w

900 continue
1000 continue

close(7)

stop
end

C

C

C

c SUBROUTINES

C

C----------------------------------------------------------------------------

subroutine indata(inname,x,fsn,nn)

dimension x(*)
character*16 inname

c

open(5,file=inname,statusf'old')
read(5,*) fs,n

do 100 j=ln
read(5,*) t,x(j)

100 continue
close(5)
ft=fs/2.

do i=1,20
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ii=2**i
di=float(ii)
if (di.ge.ft) then

nn=i
go to 200

endif
end do

200 continue

return
end

C

C

subroutine smean(nx)
C

c This subroutine calculates and removes the mean value of
c the sampled data.

C

dimension x(*)
real meanv

C

asum=O.
do 100 i=1,n

asum=asum+x(i)
100 continue

meanv=asum/n

do 200 i=l,n
x(i)=x(i)-meanv

200 continue

return
end

C

C

subroutine filter(mob,t,bk)
c

c Routine generates FIR filter weights.
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c Mothod devised by Potter, Bickford and Glaze.

c There are a total of 2M+1 weights...filter generates M+1.
C

c --- variables ---
c t = the sampling interval in second.

c b = cutofi(half-power point) of the filter in Hz;

c must be on the range from o to 1/2t.

C

c Results are stored in bk
c

c ---- Note; in the case of highpass filter, the value of

c weight bO must use 1-bO instead of bO.

c
dimension bk(*),d(3)

data dO/0.35577019/,d( 1YO.2436983/,d(2)/0.07211497/,

* d(3)10.00630165/

pi=atan(1.)*4.

m=mo

c first generate plain boxcar weights

factf2.*b*t
bk(1)=fact
factffact*pi
do 5 i=l,m
fi=i

5 bk(i+1)=sin(fact*fi)/(pi*fi)
c trapezoidal weighting at end

bk(m+l)=bk(m+l)/2.
c Now apply the Potter p310 window

sumg=bk(1)
do 15 i=1,m
sum=dO
fact=pi*float(i)/float(m)

do 10 k=1,3
10 sum=sum+2.*d(k)*cos(fact*float(k))

bk(i+l)=bk(i+l)*sum

15 sumg=sumg+2.*bk(i+l)
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ml =m+ 1
do 20 i=l,ml

20 bk(i)=bk(i)/su~mg
return
end
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R Program List of wavelet iransorm(MATLAB)

% Wavelet Transform

% by
% Dept. of Mechanical Engineering

% Naval Postgraduate School

% Ver. 1.0 Aug. 5 1993

% By using MATLAB Ver. 4.0

% -- Variables

% infile = input filename

% fs = sampling frequency

% n = the number of sampled dat

% ( n must be n-th power of 2.)

% avg = mean value of sampled data

% fact = the factor of sweep rate

% x(i) = the magnitude of signal

% z(i,j) = the result of wavelet transform

load c:\users\infile

fs=infile(1,1);

n=infile(1,2);

dt=1/fs;
x=infiie(2:n+1,2);

asum=O;

% remove mean value

for jl=l:n

asum=asum+x(jl);

end
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avg=asum/n;
for il~l:n

x(il1)=x(il1)-avg;
end

% Decide the sweep rate

fact=input('sweep method: V1I octave =1, 113 octave =3 )

ft=fs/2;
for i121:20

ii=2'Ail;
if ii >=ft

nn=i 1;
break

end
end

if fact == 1
nk=nn;

else
nk=fact*nn;

end
nr=nk-fix(fact)+ 1;

% calculate wavelet transform

tini=O;
ttime=n*dt;
fO=2*pi;
jm=fix(ttime/(2*dt));
wt=zeros(nrjm);

for il= 1 : nr
io=2 A (nk-il+ 1)/fact);
a=io*dt;
nxn=fix(ttixne/a);
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if nm==O
fn =1

end
ddt--ttime/nm;
sr=sqrt(-log(O.O1 )*2)*io;
mx=fix(sr);

if mx >= (2*n)
mx=2*n;

end

for j=1:nm

sum=0+i *0;
b=ddt/2+ddt*0j-1);
jk=fix(b/dt)+ 1;
for k=-mx:mx

t--k*dt/a;
kl=jk+k;
if k1 <1

if k1< -n
kl=kl+2*n;

else

kl=kl+n;
end

end
if kl>n

if k1 >= 2*n

k1=k1-2*n;
else

kl=kl-n;
end

end
x1=0.-i*fO~t;
sum=sum+X(k 1)*exp(x1)*exp(-t*t/2)*dt;

end
w=abs(sum)/sqrt(a);
w=abs(w)*abs(w);
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wt(i 1j )=ww;

% Plotting

line= 128;
z=zeros(nr,line);
for il=l:nr

io=2 A((nk-i+ lYfact);
a=io*dt;
k=fix(ttime/a);
if k == 0

k=1;
end
if k =line

step=linelk;
k2=0O;
for ii=1:k

kl=k2+1;
k2=fix(step*ii);

st--k2-kl+1;
if st <= step

cf=step/st;
else

cf=stlstep;
end

for ijAkl12
zki 1 ,j )=wt(i 1,ii)/cf/st;

end
end

else

step=k/Iine;
k2=0;

for ii=1:!ine
kl=k2+1;
k2=fix(step*ii);
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st.=k2-k1+ 1;
ssum=-O;
for ijAkl12

ssum=ssum+wt(i 1,ij);
end

if st <= step
ssum=ssum* step/st;

else

ssum=ssum*stlstep;
end
z(i 1,ii)=ssum;

end
end

end
xma=max(z);

xp=max(xma)*1.2;
dtl=ttime/(line- 1);
for k=1:line

xvalue=(k-l1)*dtl;
xx(k)=xvalue;

end

for k=1:nr
yy(k)=-k;

end

surflxx,yy,z)
xlabel(CTime (sec)')
ylabel('Frequency step')

zlabel('Amplitude')

axis((tini ttime 1 nr 0 xp])
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C. Plotting Program List (3 Dimension)
FOTRAN 77 and CA-DISSPIA Graphic Package -

C

program plot
C

c This program uses the graphic package CA-DISSPLA to
c plot the results of wavelet transform
C

c tmax = time record length
c tint = initial time
c fmin = start frequency step
c fmax = stop frequency step
c nn = the number of the frequency step
c fac = index of sweep method
c fname = input data filename generated by main source
c program
c

dimension rr(32768),wt(50,256)

character*25 fname
c

write(*,*) 'input file name ?'
read(*,20) fname

20 format(a25)
c
c data distribution or reduction for 3-D graphics

C

line=256

open(8,file=fname,status='old')

read(8,*) tini
read(8,*) tmax
read(8,*) nnn,fac
nk=nn*int(fac)

nr=nk-int(fac)+l
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ddt=tm ax/n
do 1000 i=1,nr

fio=2. **((xd-il.j )/fac)
a=fio*ddt

k=int(tmax/a)
if (k.eq.0) k= 1
if (k.le.line) then

step=float(line)/float(k)
k2=0
do 950 ii=l,k

read(8,*) iljl,w

kl=k2+1
k2=int(step*ii)
st--float(k2-k1)+. 1

5 if (st.le.step) then

coe=step/st
else

coe=st/step
endif

do 930 ij=kl,k2
wt(i ,ij )=w/coe/st

930 continue
950 continue

else
step=float(k)Ifloat(line)
k2=0
do 800 ii=1line

k1=k2+ 1
k2--int(step*ii)
sum=O.

st--float(k2-kl)+1.
do 750 ij=klk2

read(8,*) iljl,w
sum =sum+W

750 continue
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if (st~le.step) then
sum=sum*stepfst

else
sum=sum*stlstep

endif
wt(i ,ii )=sum

800 continue
eradif

1000 continue

close(8)

smax=0.
do 2000 i=1,nr

do 2000 j=1,Iine
if (smax.Ie.wt(i~j)) smax=wt(ii.)

2000 continue
write(*,*) 'maximum=',smax
write(*,,) 'input the maximum scale?'

read(*,*) fact

do 120 i=1~nr
do 100 j=1,line

k=line*(i-l)+j
rr(k)=wt(ij)

100 continue
120 continue

dd=mod(nr,2)
if (dd.eq.0) then

nr=nr+ 1
1 (n-)*Iijfl4.

do 150 ip=kk~kl
150 rr(ip)=0.

endif
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C

c plotting
C

* call pdev( 'ln03',ieer)
call hwshd

* call ewissm
call shdchr(90.,1,0.002,1)

call height(0.15)
call physor(1.1,1.2)
call area2d(5.5,6.75)
call messagC'WAVELET TRANSFORM $',100,1.1,8.2)

call blsur
call volm3d(8.,8.,9.)

call x3name("hme (sec) $', 100)
call y3name('Frequency step', 100)
call z3name('Amplitude $', 100)
call zaxang(90.)
fmnax=float(nr)

fstep=(fmnax- 1)14.
call graf~d(tini,tmax/4. ,tmax,1. ,fstep,fmax,0. ,'SCALE',fact)

call surmat(rr, 1,line,1,nr,1)
call end3gr(0)
call endpl(0)
call donepl
end
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D. Plotting Program List (2 Dimension)
- FOTRAN 77 and CA-DISSPIA Graphic Package.

c
program levelplot

C
c This program uses the graphic package CA-DISSPLA to
c plot the results of wavelet transform with respect to each level.
c

c tmax = time record length
C tint = initial time
c fmin = start frequency step
c fmax = stop frequency step
c nn = the number of the frequency step
c fac = index of sweep method
c inname = input data filename generated by main source
c program

C

dimension x(512),y(512),wt(50,256)

character*25 inname
c

write(*,*) 'input file name ?'
read(*,20) inname

2D format(a25)
c

c data distribution or reduction for 2-D graphics
c

line =512

open(8,file=fname,status='old')

read(8,*) tini
read(8,*) tmax
read(8,*) nn,n,fac
nk=nn*int(fac)
nr=nk-int(fac)+ 1
ddt=tmax/n

60



do 1000 i=1,nr
fio=2.**((nk-j+ 1)/fac)
a=fio*ddt
k=int(tmaxja)

if (k.eq.0) k=1
if (k.le.line) then

step=float(line)/float(k)
k2=0
do 950 ii=1k

read(8,*) iljlw
kl=k2+1

st--float(k2-kl )+ 1.
if (st.le.step) then

coe=step/st
else

coe=st/step
endif

do 930 ij=kl,k2
wt(iij)=w/coelst

930 continue
950 continue

else

step=float(k)/float~line)
k2=-O
do 800 ii=1,line

kl=k2+1
k2=int(step*ii)

sum=0.
st--float(k2-kl )+ 1.
do 750 iJ=klUk

read(8,*) iljl~w
Bum=sum+w

750 continue

if (stjle.step) then
* ~suxn=su~m*step/st
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else

sumfsum*st/step
endif
wt(i,ii)=sum

800 continue
endif

1000 continue

close(8)

smax=O.
do 2000 i=1,nr

do 2000 j=f,line

if (smax.le.wt(ij)) smax=wt(ij)
2000 continue

write(*,*) 'maximum=',smax

write(*,*) 'input the maximum scale ?'

read(*,*) smax
C

c normalizing

C

do 2500 i=l,nr
do 2500 jfi,line

2500 wt(ij)=wt(ij)/smax

C

c plotting
C

call pdev('ln03',ieer)
call hwshd
call swissm
call shdchr(90.,1,0.002,1)

call height(0.15)

call page(8.5,11.)
call physor(1.5,1.5)
call area2d(4.8,4.7)
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call xname('Time (sec) $', 100)
call yname('Frequency step', 100)
call hkeadin(WAVIELET TRANSFORM $V,100, 1. 1,1)
call thkfrm(0.01)
call yaxang(0.)
call graf~tini,tmax./4.,tmax,l.,l.,nr+l)
call grid(1,1)
do 3000 i=l,nr

do 2700 j=1,line
xQj)=dt*floatQj)
y(j )=float(i)+wt(ij)

2700 continue

call curve(x,y,Iine,0)

3000 continue

call endpl(0)
call donepl
stop
end
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